With Electric Cars, U.S. States Can Boost Energy Self-Reliance

Date: 4 Oct 2011 | posted in: Energy, Energy Self Reliant States | 2 Facebooktwitterredditmail

The U.S. Northwest could get an additional 12 percent of its electricity from local wind power if 1 in 8 of the region’s cars used batteries. 

That’s the conclusion of a new study from the Pacific Northwest National Laboratories investigating how electric vehicles can help smooth the introduction of more variable renewable energy into the grid system.

The study examines the Northwest Power Pool, an area  encompassing roughly seven states in the Northwest.  With around 2.1 million electrified vehicles, the grid could support an additional 10 gigawatts of wind power.  With electricity demand from those seven states of about 250 billion kilowatt-hours (kWh) per year, the additional 10 gigawatts of wind would provide 12 percent of the annual electricity demand (roughly 30 billion kilowatt-hours per year).

The results are no doubt applicable to other regions of the country.  In fact, at least 33 states have enough wind power to meet 10 percent or more of their electricity needs and if the same portion of vehicles (13%) were electrified in those 33 states, it would allow them to add a collective 100 gigawatts of wind power, meeting nearly 14% of their electricity needs. 

Northwest Power Pool

In the long-run, a fully electrified vehicle fleet would theoretically – just do the math! – provide enough balancing power for a 100% renewable electricity system.  And since the large majority of those vehicle trips would be made on batteries alone, it would be a significant dent in American reliance on foreign oil for transportation. 

Further reading: learn a bit more about electric vehicles helping wind power in Denmark, too.

Hat tip to Midwest Energy News for the original story.

Read More

EV Charging Station Charges Cars and Supports the Grid

Date: 24 Jan 2011 | posted in: Energy, Energy Self Reliant States | 0 Facebooktwitterredditmail

The batteries and the solar cells themselves are something like shock absorbers for the grid. If drivers want to charge up their cars during peak periods on the grid, the charging station’s batteries will meet part of that demand so that the impact on the grid is milder. Likewise, the solar cells will chip in with some energy, lessening the load on the grid.

“If with new technologies we can control these resources on the distribution side, we can eliminate the need for potentially very expensive upgrades to the distribution system,” said James A. Ellis, the senior manager for transportation and infrastructure at the T.V.A.’s Technology Innovation Organization.

Read More

A Look at Electric Vehicle Economics

Date: 19 Jan 2011 | posted in: Energy, Energy Self Reliant States | 0 Facebooktwitterredditmail

The blog Camino Energy has a very detailed analysis of the payback on an electric vehicle (Nissan Leaf) compared to a conventional Toyota Camry.  The author looks specifically at Northern California, where off-peak electricity prices are low enough that utilities could offer electric vehicle (EV) charging at 5 cents per kilowatt-hour (kWh).  At that rate, with solely night-time charging of the EV and driving 12,000 miles a year, a Nissan Leaf pays back in 5 years. 

The author provides a sensitivity analysis against higher electricity prices, and his entire post is worth reading.

Read More

Storage Potential of Electric Vehicles

Date: 19 Oct 2010 | posted in: Energy, Energy Self Reliant States | 0 Facebooktwitterredditmail

One of the keys to maximizing renewable energy production (decentralized or otherwise) is providing electricity storage to smooth out variabilities in wind and solar power production. Electric vehicles have a lot of promise, as the cars could provide roving storage and dispatchable power to help match supply and demand.

So could a large number of EVs actually help with the huge variations in wind that can occur? According to Claus Ekman, a researcher at the Risø National Laboratory for Sustainable Energy in Frederiksborgvej, Denmark, it can, to an extent. Ekman recently published a paper in the journal Renewable Energy that modeled how well EVs could handle increasing wind power generation. He found that in a scenario involving 500,000 vehicles and 8 gigawatts of wind power, various strategies would reduce the excess, or lost, wind power by as much as 800 megawatts — enough to power more than 200,000 homes. Ekman calls this a “significant but not dramatic” effect on the grid. Scenarios involving 2.5 million vehicles and even more wind power show an even greater impact.

The U.S. currently has around 35 gigawatts of wind power, so it would take 2.1 million EVs to provide a similar effect in the U.S. (reducing the lost wind capacity by 10 percent of total installed capacity).

Read More

1 2 3 4